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Abstract

Effective communication of technical ideas often demands compelling mathematical diagrams

and visualizations. Just as TeX makes the best practices of professional mathematical type-

setters accessible to everyday users, we aim to codify and automate best practices of pro-

fessional mathematical illustrators. Currently, however, there is a functionality gap between

3D modeling software and 2D illustration software. The former allows users to manipulate

3D geometric information, while the latter allows users to manipulate aesthetic and stylistic

information. in order to algorithmically illustrate figures such as traditional mathematical

illustrations, we would need to the strengths of both of these paradigms.

We have begun the journey of reconciling these two software paradigms by developing

essential algorithms for such a system. More concretely, we are studying the conversion of

3D Catmull Clark subdivision surfaces to 2D curve representations that are amenable to

traditional aesthetic design and communicate the visual geometric relationships present in

views of the 3D representation.
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1 Introduction

Our work seeks to bridge a functionality gap between 3D Modelling software and 2D Illus-

tration software. We will start out by describing each of these software paradigms along with

their strengths and weaknesses. We will then describe our proposed synthesis of these two

paradigms and related problems that must be addressed in the creation of this new software.

3D Modeling Software. Traditional 3D modeling software, such as the open source

Blender program, are used primarily for defining the geometry and visual appearance of

models to be used in various applications such as 3D animation, the automotive industry,

and architectural visualization. These programs use the latest and greatest algorithms in the

fields of computational geometry, rendering, and Computer Aided Design, but they do not

have the capability to stylize their models with precision. Many of them are geared towards

rendering the models using realistic models of light transport. As discussed in [1], realistic

lighting is not necessarily the best stylistic decision for communicating geometric information

about an object. See 1 for an example realistically rendered image. Please see 2 for a typical

3D model as might be seen during manipulation in a 3D Modeling program. The visual

style communicates the individual discrete vertices, edges, and faces that a user can modify

which is important to a person constructing a 3D model, but it does not emphasize visual

information that would be important to a geometer or a person concerned with aesthetics.

2D Illustration Software. 2D illustration software, such as the open source Inkscape,

are used primarily by designers and communicators to create 2D Scalable Vector Graphics

(SVG) illustrations that communicate ideas, rather than realistic visual artifacts. They have

a lot of capabilities for modifying the colors and stroke sizes of lines and interiors, labeling

important features with textual boxes and arrows, and compositing different visual objects

on top of each other through blending. While they are great at manipulating the aesthetics

of images, they do not necessarily understand 3D geometry and take it into account in the

manipulations that they support. Please see Figure: 20, which is an example 2D illustration
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Figure 1: 3D modeling systems are often used to produce photorealistic imagery, which is not always
the proper best at communicating geometric information as discussed in [1]. Notice how difficult it
is to discern the edges and faces of the dice, how the reflections of the bright light from the window
obscure the structure of the glasses, and the shadows make it hard to read the visual extent of the
glass hidden in the dark background. Image Credit: Gilles Tran on Wikipedia.

that we created in Inkscape that communicates light transport within a traditional Cornell

Box scene.

Geometric Latex. Our goal is to unify these two paradigms to enable the creation of

figures that are generated directly from 3D geometric mathematical models and amenable

to stylistic modification that takes advantage of the geometric information. In essence, we

wish to create a “geometric LATEX” program. See Figure: 3 for an example illustration

that we could make natively using such a program. We would also be able to easily produce

traditional mathematical illustrations such as those found in Tristan Needham’s book, Visual

Complex Analysis. Most high quality mathematical illustrations found in the literature are

hand drawn, but through our work people should eventually find it easier to create high

quality geometric illustrations using software in lieu of non-digital methods.
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Figure 2: A typical 3D model that is manipulated in a 3D modeling program. Note the visual
emphasis on representational features associated with the discretization of the geometry such as the
triangular faces and flat shading, rather than the emphasis on light transport properties emphasized
in realistic renderings like in Figure: 1 or the continuous geometric properties emphasized in our
desired system such as in Figure: 3.

Foundational Problems To realize the goal of a geometric LATEXprogram, we need to

solve many problems revolving around the extraction of important curves from 3D models

such as those used for stylization in Figure 3. In general, we need to develop algorithms for

extracting representations for any curves that communicate important visual or geometric

information or that may be required for the conversion between the processes defined within

each paradigm that are not yet compatible with each other, such as fills in 2D and shadow

casting in 3D. In particular, we have investigated the extraction of silhouette curves and

parameter curves, as well as critical points and integral curves for the Morse-Smale complex.

We have also investigated various sub problems for curve extraction, including locating every

curve, finding unique representative points for every curve, gradient descent methods, and

planar curve projections.
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Figure 3: A 3D geometric image created with proper aesthetic design. To create this image, a
system would need to model the saddle geometry along with its smooth boundary, compute tangents
and curvatures, extract minimum and maximum curvature curves to defined the local coordinate
system, extract smooth silhouette curves, segment curves based on occlusion, extract the planar
shadow via a silhouette curve projection, and provide user features for curve and tangent aware
labels. The system would need to be able create gaps at intersections between labels, arrows, and
the geometric curves. The Image is Courtesy of Keenan Crane.

2 Background/Prior Work

2.1 Important 2D curves for projected 3D models.

Various curves on surfaces communicate important geometric information. Here is a list of

some relevant curves that folks have tried to extract from surfaces in the past.

• Parameter curves are useful in showing lines along a collection of quadrilaterals and

showing global coordinate systems. They are useful primarily because 3D models are

often created using a discretization that follows the symmetries and geometric structure

of the object they are modelling.

• Silhouette curves communicate the visual extent of the model and the boundary. The

projection of silhouette curves onto a plane determine the shadows that a surface casts.

The collection of silhouette curves for a surface without double negative curvature

defined with regards to every viewing direction constrained to a plane is sufficient to

describe the geometry of the surface.
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• Minimum - Maximum curvature curves communicate the curvature of the model

and locally intuitive coordinate systems.

• Geodesic curves communicate the path on the surface of minimum distance between

two points on a surface.

• Integral Lines: lines that follow the gradient of a function defined on a surface from

one critical point to another. These may be used to form the Morse-Smale complex

which segments the model into regions with similar monotonic functional behavior.

2.2 Prior Extraction Methods

2D Curve Extraction Methods. Many people have extracted silhouette curves by sim-

ply tracing the exterior boundary of a 2D rasterization of the surface. This approach suffers

from discretization and sampling problems and does not provide much information about the

3D geometric structure of the silhouette curves. For instance, they can’t be used to compute

direct shadows. It also may be possible to extract silhouette curves using an algorithm akin

to the marching squares, but again it would suffer from the same sorts of problems.

3D Curve Extraction Methods. Stroila et. al. were able to extract silhouette, shadow,

gleam, and other curves via particle systems. They have also studied practical ways to

utilize these curves for illustration by describing how to sort, orient, identify, and fill them

as closed regions. [7] Their methods mainly rely on the intersections of implicit surfaces

and produce high quality curves, but it would be difficult and computationally inefficient

to fit a particle system to complicated arbitrarily defined surfaces, such as Catmull-Clark

subdivision surfaces.

2.3 Catmull-Clark Subdivision Surfaces

Catmull-Clark subdivison surfaces are a very popular subdivision method for quadrilateral

meshes, that produces C1 limit surfaces (i.e. surfaces with continuous positions and tangents)
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that approximate points that lie along meshes of arbitrary topology. [3] The stencils that

define this subdivision scheme are shown in Figure: 4 and Figure: 8 shows an example series

of Catmull-Clark subdivision steps on a cube control mesh with a sphere like limit surface.

Figure 4: The standard stencils for a Catmull-Clark subdivision step are shown that specify the
linear combinations used to compute the new edge points, face points, and vertex locations. The
stencils at the bottom of the figure show the stencils for boundary edge points and vertex locations.
Image Credit: [9].

Prior Linear Patch Methods Naively we could directly evaluate curves over the linear

patches defined on standard polyhedral 3D models, but much like the results found in [2],

such lines would jitter back and forth over boundaries and would not converge to smooth

natural and correct looking curves even after substantial subdivision of the surface. See

Figure 6 for example of Eisemann et Al’s attempt to extract silhouette curves from linear

patches. We therefore wish to work on Catmull-Clark Subdivision surfaces that allow us to

take a discrete quadrilateral control mesh and perform calculations on its continuous limit

defined subdivision surface, instead of any intermediate discrete representation. See Figure

: 7 for an illustration of control meshes and limit surfaces.
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Figure 5: A cube mesh is shown along with 4 subdivision steps using the Catmull-Clark subdivision
algorithm. The steps proceed from left to right, top to bottom. The bottom right figure shows the
Loop-Schaefer geometry patch approximation of the Catmull-Clark limit surface.

Finite Element Methods There has been work with finite element methods and Catmull-

Clark, such as those using quadratic interpolants discussed in [10] and [11]. We have avoided

finite element methods in our computation of positions, tangents and curvature, because the

surfaces we will be using as discussed in the next section make it very easy to analytically

evaluate and differentiate the surface position functions.

2.4 Loop-Shaeffer Approximations

No matter how finely we refine a traditional Catmull-Clark surface, it will still be a collection

of linear patches which suffer from the same problems as in [2]. Jos Stam came up with a

method of directly evaluating Catmull-Clark limit surfaces at arbitrary parameter values[4],

but it is based on matrix diagonalization methods and would difficult and less efficient to

use in the extraction algorithms we are interested in.

We get around these problems by directly computing a continuous and differentiable

7



Figure 6: Linear Patches Silhouette curves either produce staircase patterns or don’t properly lie
on the geometry, even in the limit. Image Credit: [2].

Figure 7: A model of a fish represented from on the left by its control mesh and on the right by a
geometry patch approximation of its Catmull-Clark limit surface.

approximation of the limit surface via the scheme described in [5] We can create a one-to-

one correspondence between faces in the control mesh and bicubic Bezier surfaces (a.k.a.

“patches”) that approximate the limit Catmull-Clark subdivision surface that the faces

represent. See Figure: 8 for an illustration of how the Loop-Schaeffer is a high quality

approximation for a limit Catmull-Clark surface.

We then able to derive control points for a geometry patch which we will denote Gij

(Figure: 9) and two tangent patches, denoted Uij and Vij (Figure: 10), one for each principal

parameter direction along the bicubic patch. The tangent patches are necessary, because

the geometry patches only exhibit G0 continuity in the presence of extraordinary vertices

(i.e. vertices with degree other than 4.) This means that the neighboring geometry patch

boundaries having matching positions, but different tangent vectors. Since any quadrilateral

mesh that is not homeomorphic to a torus must contain an extraordinary vertex, it is essential
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Figure 8: A Loop-Shaeffer geometry patch surface is shown along with a successively refined Catmul-
Clark control mesh which converges to a limite surface that is very similar to the bicubic patch
approximation.

that we use the tangent patches to ensure effective differentiability everywhere along the

surface formed by the union of the bicubic patches.

For the remainder of the paper, we will be referring to these Loop - Schaefer Geometry

and Tangent patch defined surfaces defined on quadrilateral meshes whenever we use the

term “surface”. We will assume that these surfaces do not contain boundaries.
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Figure 9: Geometry Patch Control Points for a single control mesh face.

Figure 10: ∂u and ∂v tangent patch control vectors for a single control mesh face.

3 Methodology

3.1 Definitions and Calculus on Bicubic Patches

In this section we will discuss some fundamental calculus computations involving the patches

that will be used in curve extraction algorithms.

Bezier Surfaces A bicubic patch is a Bezier surface that can be represented explicitly in

terms of the so-called Bernstein polynomials, and interpolates data points. The beauty of

the bicubic patch approximations for Catmull-Clark subdivision surfaces described by Loop

and Schaefer is that they allow us to transition from discrete math to well defined continuous

math.
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The Bernstein polynomials are defined as follows:

Bi,n(x) = Bni (x) =

(
n

i

)
xi(1− x)n−i for i ∈ {0, · · · , n}

Two-dimensional Bezier surfaces are defined parametrically as follows:

[0, 1]× [0, 1]→ R3 :
n∑
i=0

m∑
j=0

Bni (u)Bmj (v)Ci,j

where n,m is the degree of the surface, which is represented by (n+ 1) · (m+ 1) control

points denoted generically here by Cij.

Geometry Patches The geometry patch surfaces are of degree (3, 3) and are therefore

represented by the 16 control points Gij as follows:

g(u, v) =
3∑
i=0

3∑
j=0

B3
i (u)B3

j (v)Gi,j

Partials Defined by Geometry Patches We can easily take partial derivatives of a

Geometry Patch as follows:

gumvn =
∂g

∂um∂vn
=

3∑
i=0

2∑
j=0

B(m)
i,3 (u)B(n)

j,3 (v)Gi,j

where m and n are the degrees of differentiation in u and v respectively.
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Partials Defined by Tangent Patches We can easily take partials of g in u and v by

differentiating the relevant u or v parameterized Bezier function, but for the most part we

will not make use of this pleasantry, because the geometry patches may be non-differentiable

on the boundaries. We will instead evaluate the partials from the tangent patches.

gu :=
∂g

∂u
=

3∑
i=0

2∑
j=0

B3
i (u)B2

j (v)Ui,j (1)

gv :=
∂g

∂v
=

2∑
i=0

3∑
j=0

B2
i (u)B3

j (v)Vi,j (2)

Normals The normal direction is defined for any point on the surfaces as follows:

N(u, v) = gu × gv(u, v)

Typically normal vectors would be normalized to a unit length, but for the purpose of ex-

tracting silhouette curves this normalization will not affect the final results, which enables us

to use the simplified (unnormalized) expression. Not only is the simplified expression easier

to differentiate symbolically, it also outputs 3 dimensional vectors containing multinomials,

which work well with the root finding algorithms in Section : 3.5.3.

3.1.1 Gradient Descent

Many of our algorithms rely on gradient descent to optimize various functions on surfaces.

A proper selection of step sizes is important for these operations. If the steps are too small,

then performance will suffer due to slow convergence. If the steps are too large, then the

optimization procedure may overshoot local minima and fail to converge. Gradient descent

may be performed on any function f : Rn → R : provided that f is differentiable. A direction

u ∈ Rn is a search direction if the directional derivative of f along u is negative. In other

words for a search direction u, the following holds:

12



Duf = ∇f · u < 0

Given an initial point x0 and a search direction u, we search for a new point x1 := x0+τu

that is of a step size that is guaranteed to make progress towards finding a local minima.

The step size should therefore satisfy two conditions as follows:

1. The Armijo condition f(x0 + τu) ≤ f(x0) + c1τDuf(x0)

2. The Wolfe condition |Duf(x0 + τu)| ≤ c2|Duf(x0)|.

where c1, c2 ∈ R are any two constants such that

0 < c1 < c2 < 1.

We can then compute the step size via Algorithm: 3.1.1.1.

For the purposes of this thesis, we will label gradient descent operations as follows:

x1 = GD(f, x0)

where x0 is the initial point, f is a differentiable function, and x1 is the resultant minimization

of the function.

13



Algorithm 3.1.1.1 Given an initial point x0 and a search direction u, this algorithm searches
for a point that fulfills the Armijo and Wolfe conditions makes progress towards finding a
local minimum. Please refer to 3.1.1.

begin
α← 0
β ← +∞
τ ← 1
repeat

if Armijo is not satisfied then
β ← τ.

else if Wolfe is not satisfied then
α← τ

else
BREAK.

end if
if β < +∞ then
τ ← (α + β)/2

else
τ ← 2α

end if
until BREAK
end

3.1.2 The Visibility Function

In the context of this thesis, we will define the visibility function as a measure of whether

the surface is forward or backward facing relative a viewing direction. This is not to be

confused with occlusion, which is a measure of how many surfaces obscure a surface point

from a viewer. Given a fixed yet arbitrary viewing direction E we can define the visibility

function as follows:

f(u, v) = N(u, v) · E

A location (u, v) in parameter space on a surface is visible if and only if f(u, v) is negative.

Note that the location may still be occluded by another portion of the geometry. Also note

that we are assuming an orthonormal viewing direction, instead of a perspective projection,

because it simplifies our mathematics. [6]

14



Silhouette Curves and Points A Silhouette point p is any point such that the visibility

function is zero. In other words the following must hold:

p = g(u, v) and f(u, v) = 0

A silhouette curve contains a closed ordered set of silhouette points. In other words they

are defined as the boundary between the visible and non-visible regions of the surface.

Behavior of Visibility Function Assuming that the viewing direction E has unit length,

the following properties hold for the visibility function f :

• f has a bounded range as follows: −|N | ≤ f(u, v) ≤ |N |

• f has a Global Minimum when f(u, v) = −|N |.

• f has a Global Maximum when f(u, v) = |N |.

• Silhouette curves are defined when f(u, v) = 0.

• The front side of a surface is defined by f(u, v) < 0

• The back side of a surface is defined by f(u, v) < 0

15



Partials of the Visibility Function The first order partial derivatives for the visibility

function may be derived as follows using applications of the product rule for derivatives of

cross products:

N(u, v) = gu × gv(u, v)

f = E · (Pu × Pv)
∂f

∂u
= fu = E · (gu2 × gv + gu × guv)

∂f

∂u
= fv = E · (guv × gv + gu × gv2)

Similarly, the second order partial derivatives are as follows:

∂f

∂u∂v
= fuv = E · (gu2v × gv + gu2 × gv2 + guv × guv + gu × guv2)

∂f

∂u2
= fu2 = E · (gu3 × gv + 2gu2 × guv + gu × gu2v)

∂f

∂v2
= fv2 = E · (guv2 × gv + 2guv × gv2 + gu × gv3)

Finding Critical Points of the Visibility Function As one might expect, we can locate

critical points of the visibility function defined on a surface using a 1st derivative test, and

then classify them as minima, maxima, or saddle points using a 2nd derivative test. Please

note that the 2nd derivative test will fail if the visibility function is non-Morse, i.e. if it has

infinite sets of connected critical points.

Finding Critical Points We could potentially analytically find the critical points as the

roots of |∇f | over a patch, but it is intractable with current mathematics.

We will instead use a numerical Gradient Descent approach as discussed in Section 3.1.1.

16



We could potentially use f(u, v) as our objective function for minimization and maximiza-

tion, but this will only reliably find maxima and minima, because saddle points are unstable.

This is a problem, because saddle points are important in computing a Morse-Smale complex

as in Algorithm 3.4.0.3. We can instead use |∇f | as our objective function, which seeks to

minimize the magnitude of the gradient, which is at a minimum value of 0 only at critical

points.

Classifying Critical Points Once we have located critical points, we can classify them as

minima, maxima, or saddle points using the second derivative test using the Hessian matrix

to determine the principal curvature directions at the critical points. The Hessian of a

function such as the visibility function f of the form R2 → R is as follows:

 ∂f
∂u2

∂f
∂u∂v

∂f
∂v∂u

∂f
∂u2


The Hessian H classifies a critical point p = g(u, v) as follows:

• p is a minima if H(u, v) is positive-definite.

• p is a maxima if H(u, v) is negative-definite.

• p is a saddle point if H(u, v) is indefinite.

Since analytically computing the eigenvalues for the visibility function may be difficult.

Because the Hessian is a symmetric matrix due to the symmetry of second derivative we can

instead use Sylvester’s criterion to check for positive definiteness which states that it is

sufficient to check that all of the leading principal minors of the Hessian are positive at p.

17



Therefore, H is positive definite iff

(
∂f

∂u2
(u, v)

)
> 0 and

(
∂f

∂u2
(u, v)

)
·
(
∂f

∂u2
(u, v)

)
−
(

∂f

∂u∂v
(u, v)

)2

> 0

We can therefore find and classify all of the critical points in an efficient manner.

3.2 Mesh Transversals

Halfedge Meshes. Since our surfaces are represented by a patchwork quilt of various

quadrilaterals and their associated bicubic patches, our algorithms need to be able to seam-

lessly walk across boundaries in an efficient manner and in a way that allows us to view

the entire mesh as one continuous global surface. This requires our algorithms to deal with

many local coordinate systems with variable orientations in a consistent manner. We use a

halfedge data structure to efficiently represent and query the connectivity, topology, and ge-

ometric embedding information for a surface. See Figure: 11 for a description of the halfedge

mesh structure.

Figure 11: Halfedge meshes efficiently represent the connectivity information of a quadrilateral
mesh, or any polyhedral mesh for that matter. Every vertex, full edge, and face has a pointer to a
representative halfedge. Every halfedge has pointers to the face that contains them, the next halfedge
around that face, the vertex it originated at, the full edge and face that it belongs to, and the twin
halfedge on the other side of the halfedge’s full edge. Extra information may be stored on each of
these features, most notably the embedded positions of each vertex in space. We could also store
pointers to each halfedge’s previous halfedge which is intuitively a reversal of the next pointers.
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Orientation Definitions. We would also like to take this opportunity to discuss some

orientation details for transversing the mesh, e.g. while tracing a globally defined curve such

as the silhouette curve that doesn’t conform to any local patch coordinate system. We will

define the edge number n(h) of a halfedge h as follows:

n(h) =


0 if h = h→ face→ half edge

n(h→ prev) + 1 otherwise.

We can use edge numbers to tell the relative orientation of neighboring patches. See

Figure: 12 for an illustration of all of the possible neighboring orientation relationships.

Referring to the figure, if we want to transition from a point (u, v) specified on the inner

patch to one of the outer blue patches across an inner halfedge with edge number n1 and an

outer halfedge with edge number n2 we can do using Algorithm 3.2.0.1. Note: if a tracing

travels over a diagonal or travels more than a unitary distance in parameter space, we can

simply apply the algorithm multiple times.

Algorithm 3.2.0.1 Specifies a procedure for transitioning between local coordinate sys-
tems defined by a starting patch p1 and an ending patch p2 after travelling across a patch
boundary.

Require: The surface must be represented via a halfedge mesh and utilize a consistent
choice of local coordinate system based on the canonical halfedge for a given control mesh
face.

Ensure: Properly transforms the input point from p1 to p2 within the unit rectangle pa-
rameter domain.
Start at point (u, v) in p1 space.
o1← edge number of p1.
o2← edge number of p2.
(u, v)← (u, v)(mod1) {Translation back into unit rectangle.}
n← (o2− o1 + 2) (mod 4). {Number of clockwise rotations.}
(u, v)← (u− .5, v − .5)
for n times do

(u, v)← (−v, u)
end for
(u, v)← (u+ .5, v + .5)
end
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Figure 12: The four outer blue patches border the red inner patch in each for the four possible
orientation relationships. Notice the arithmetic difference between the red patch edge numbers
and its neighboring twin edge numbers is different for every possible orientation. Notice also that
the local coordinate directions can flip after a transversal across a boundary. Because of this, it
is important when designing algorithms to have them rely on global geometric properties, rather
than local directions, such as the gradient along with a consistent handed choice of perpendicular
direction.

3.3 Extracting Parameter Curves

Extracting parameter curves is quite straightforward. Start corner of a patch and then

proceed in either the u or v direction as desired until you either get back to the original

point or you encounter an extraordinary vertex. You may see a more formal description in

Algorithm: 3.3.0.2, noting that the computation is symmetric for the u or v direction. See

Figure: 13 for an example of parameter curves extracted from a torus.
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Algorithm 3.3.0.2 Given a surface, a point, and a fixed yet arbitrary u direction, this
procedure computes the visible and nonvisible portions of an axis aligned parameter
curve.

Require: The surface must be continuous, and parameterized via a quadrilateral control
mesh.

Ensure: Returns a set of visible and nonvisible portions of the parameter curve going
through the input point in the u direction.
begin
Start at point G(u0, v0)
(u, v)← (u0, v0)
repeat

Start new curve.
if f(u, v) < 0 then

Mark curve as visible.
else

Mark curve as not visible.
end if
Add g(u, v) with tangent gu(u, v) to curve.
repeat
u← u+ du
Add G(u, v) with tangent gu(u, v) to curve.
if u > 1 or u < 0 then

Transition to a neighbor patch via Algorithm 3.2.0.1.
STOP if on a patch with an extraordinary vertex.

end if
until f(u, v) changes sides.

until (u, v) ≈ (u0, v0) on original patch within the step size.
end
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Figure 13: Here are some example parameter curves along the two axis of a torus that were extracted
by our system. Notice that the curves are smoother versions of the discrete lines constituting the
control mesh. The control mesh was sculpted to follow the symmetries of the torus and therefore
these parameter curves are useful in communicating the structure of the torus.

3.4 Extracting the Morse-Smale Complex of a Scalar Function

In this section, we discuss the computation of a Morse-Smale Complex for an arbitrary

scalar function f , which will allow us to extract unique representative points for every level

set associated with a particular value in the range of f , such as silhouette curves, which are

the 0 level set for the visibility function.

Morse Functions. A function f(p) is Morse if:

• f is continuous and differentiable.

• All critical points are isolated.

• All critical points are non-degenerate, i.e. det(Hessian(p)) 6= 0.

It is reasonable to assume that our functions will be Morse, because our surfaces have

C1 continuity provided by the tangent patches, and most Catmull-Clark surfaces in general
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are not usually flat. If we needed to process flat surfaces, we could possibly perturb the

input points to remove the analytic flatness, while retaining the visual flatness or we would

process flat patches as special cases.

Integral Lines. An integral curve l is one that follows the gradient of a function f from

one critical point to another. In other words:

∂

∂t
= ∇f(l(t)) for all t ∈ R

where R is the domain of l.

Morse-Smale Complex. The Morse-Smale Complex of a function f is an embedded

graph on a surface formed by connecting every minima to every saddle point that it shares

an integral curve with and likewise connecting every maxima to each saddle point that it

shares a curve with. This complex may be used to topologically segment the function. See

Figure: 14 an example.

We can then use a Morse-Smale Complex computation as a means of extracting exactly

one silhouette point from every unique silhouette curve that may be then used in our tracing

algorithms. See Algorithm 3.4.0.3.

Figure 14: Morse Smale Complex of the pullback of a function in two variables, i.e R × R → R.
Every saddle point connects to 2 minima and 2 maxima.
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Algorithm 3.4.0.3 For a given height h, finds exactly 1 point on every level set defined for
a function f R× R→ R on a surface S.

Require: S has no boundary and is Morse.
Ensure: Outputs a unique representative for every level set of height h.

Initialize Morse-Smale complex graph G.
Find all minima, maxima, and saddle points.
Add critical points as vertices to G.
for Every saddle point do

Trace 2 integral curves up to 2 maxima.
Trace 2 integral curves down to 2 minima.
Add integral curves as edges to G.
if Curve crosses level h during tracing then

Remember the location on the edge.
end if

end for
{Union find algorithm separates G into disjoint regions above and below the level sets.}
Initialize a Union Find Structure U
Make a set for vertex in G.
for (c1, c2) ∈ Edges(G) do

if h 6∈ [f(c1, f(c2)] then
U. union(c1, c2) {Union sets together if they are they do not cross the h level.}

end if
end for
for e = (c1, c2) ∈ Edges(G) do

if U .find(c1 6= U.findc2 then
U. union(c1, c2)
output the level set point location stored along e.

end if
end for
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3.5 Extracting Silhouette Curves

3.5.1 Finding Exact Representations of Silhouette Curves

We could potentially analytically extract all of the silhouette points on a surface by find the

roots of multinomial equations defined by the visibility function, but that remains intractable

at the present date and is an unsolved problem in the field of mathematics.

3.5.2 Curve Tracing Method

Because it is intractable to find the exact representations for silhouette curves, we use the

practical curve tracing algorithm 3.5.2.1. This algorithm is similar to the work of [6].

We find silhouette curves as follows:

1. Find all silhouette points that lie on patch boundaries. This may be accomplished via

a 1D root finding algorithm in one parameter along the surfaces. Please see section

3.5.3 for more information.

2. Trace the curves by starting at a silhouette point and repeatedly moving perpendicular

to the gradient of the function, then moving back to the silhouette curve by optimizing

∇f 2(u, v)

When doing the optimization, use appropriate step bounding as in Section 3.1.1.

If the function is Morse, we can alternatively find a unique collection of starting silhouette

points via the Morse-Smale complex. Please see Section: 3.4.

3.5.3 Finding Silhouette Points

Because it is intractable to find the exact representations for silhouette curves, we instead

resort to finding a Silhouette points that lie along the boundary of patches. Ideally we would

like to only find one silhouette point per disjoint silhouette curve, which would eliminate the
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Algorithm 3.5.2.1 Given a surface, this algorithm computes a set of silhouette curve
discretizations, each consisting of silhouette points and corresponding tangent vectors
pointing along the silhouette curve. We use an ε value of .1 which yields roughly 1

ε
= 10

steps per patch, because each patch constitutes a 1 by 1 square in parameter space.

Require: The surface must be continuous, differentiable, and contain disjoint silhouette
curves.

Ensure: If the surface has no boundaries, then the output curves are closed loops.
begin
S ⇐ Silhouette Point Finding Algorithm 3.5.2.2.
for Unvisited point p ∈ S do

Mark p as visited.
(u0, v0)← (p.u, p.v)
(u, v)← (u0, v0)
repeat

(dv,−du)← ∇f(u, v)
normalize (du, dv).
(u, v)← (u, v) + ε · (du, dv)
if (u, v) out of unit rectangle bounds then

Transition between patches via Algorithm 3.2.0.1.
mark boundary silhouette point as visited.

end if
(u, v)← GD (∇(f 2), (u, v)).
Output point g(u, v) and tangent (du, dv).

until (u, v) ≈ (u0, v0) within the step size.
end for
end

Algorithm 3.5.2.2 Given a surface, this algorithm finds the set of all silhouette points that
lie on patch boundaries.

Require: The silhouette points on the boundaries need to be sufficiently far apart to prevent
numerical instabilities.

Ensure:
begin
S ⇐ ∅
for e ∈ Edges do

Compute the polynomial p representing the silhouette function f along e.
Add all roots ∈ [0, 1] of p to S.

end for
return S.
end
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overhead of checking for curve equivalence, because otherwise we run the risk of tracing the

same silhouette curves multiple times. If the function is Morse we can accomplish this feat

using the Morse-Smale Complex as in Section: 3.4.

1D Root Finding on Geometry Patches. To find the silhouette points along a bound-

ary of a geometry patch, we first expand the definition of the visibility function as follows:

f = E · (Gu ×Gv)

Gu(u, v) =
3∑
i=0

3∑
j=0

B′3i (u)B3
j (v)Gi,j

Gv(u, v) =
3∑
i=0

3∑
j=0

B3
i (u)B′3j(v)Gi,j

If we assume that u = 0, then we can simplify these partial derivatives as follows:

Pu = −3
3∑
j=0

B3
j (v)G0,j + 3

3∑
j=0

B3
j (v)G1,j (3)

Pv =
3∑
j=0

B′3j(v)G0,j (4)

To compute the silhouette points along a boundary or any other 1 - dimensional axis

aligned slice of a patch, evaluate the partial derivative with either u or v set to a constant

value, such as u = 0 in Equations 3 and 4. This results in partials represented by 3-

dimensional vectors containing single variable polynomials for each dimension. The visibility

function polynomial may then be computed directly form the visibility function formula

applying the cross product and dot product operations as as normal, but with polynomial

algebra, instead of scalar algebra. The resulting single variable polynomial represents the

value of the visibility function along the given axis aligned slice within the input variable

domain [0, 1]. The roots of this polynomial coorespond to Silhouette points. The roots may

be computed using any single variable real root finding algorithm. We decided to implement
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root finding based on an interval bisection method using an interval counting method based

on Sturm’s theorem[8], although numerical algorithms may have trouble discerning between

roots that are sufficiently close to each other. They will also likely fail in the event of

a silhouette curve runs along a boundary, because this will lead to an infinite number or

roots. These Silhouette points work well, except when the silhouette curves cross boundaries

between patches that contain extraordinary vertices. Please see Figure : 15 for an example

of the types of problematic behavior the extraordinary edges cause in our curve tracing

algorithms. These problems provide the motivation for us to use tangent patches.

Figure 15: Along extraordinary boundaries, the geometry patches are non-differentiable and there-
fore the visibility function is discontinuous. This causes curve tracing to fail due to an invalidation
of its assumptions.

1D Root Finding on Tangent Patches To compute the roots of the tangent patch

defined visibility curve, please use Equations 1 and 2 for the partials. Then apply the same

parameter boundary substitution and again find the roots using polynomial vector algebra.

Degenerate surface views. Degenerate surface views occur whenever a surface is oriented

such that its silhouette curves are not disjoint, such as viewing a torus in a manner perfectly

orthogonal to its hole. Please see Figure : 16 for an example near degenerate view of a torus.

They also occur for surface with flat patches.
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Figure 16: As a torus becomes oriented with its hole perpendicular to the viewing direction, its
silhouette curves intersect each other. This is one of several degenerate cases that present challenges
to our curve tracing algorithms.

3.5.4 Projecting 3D Discretizations onto 2D Planes

Curves may be projected onto 2D planes in several ways. The most rigorous way would

be to convert the curves from their Bezier spline representations to rational splines directly.

Another way would be to project their points using traditional perspective projection tech-

niques used ubiquitous in rasterizers and project their tangents using the differential of the

surface. So far, we are using a simple method, where we project the points using perspective

projection and then project the points offset by their tangent direction to recover the tangent

direction within the projection.

4 Results

We made a system that represents quadrilateral mesh defined Catmull-Clark subdivision

surfaces through the Loop-Schaefer approximate via geometry and tangent patches. We

have developed some calculus for extracting curves on these surfaces, including the silhouette

curves, parameter aligned curves, and integral curves in We have developed algorithms for

finding the location of critical points for the Silhouette function F Please see Figure: 17 to

see some extracted silhouette curves from a pig model. We have also been able to export

SVG files containing our curves as paths. Please see Figure: 18 for an example exported

SVG file. Please see the following URL for the latest research code we are using in our work:

https://github.com/Bryce-Summers/GeometricSurfaceCurves.

29

https://github.com/Bryce-Summers/GeometricSurfaceCurves


Figure 17: A view of a pig model rendered using Loop-Schaefer geometry patches and some silhouette
curves extracted via our system. The green curves on the right represent silhouette curves that we
have extracted from the view of the pig model on the left and include curves that are occluded from
our view, such as those surrounding the pig’s four feet. There are some kinks and instabilities in
these curves that should theoretically disappear once we use tangent patches instead of geometry
patches.

Figure 18: A view of a modified toroidal surface with an associated exported SVG file.

5 Comparison with prior work

Past work including [2] has extracted silhouette curves from linear patches. They suffer from

discontinuity and a lack of accurate interpolation of the points on the surface. Please see

Figure: 6 for an example of these problems. Please see Figure: 19 for an example silhouette

curve that we extracted using our methods that is continuous everywhere and properly

follows the surface.
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Figure 19: Here are some silhouette curves extracted by our system that are continuous even when
not viewed by their defining viewing direction. The green curves represent the silhouettes generated
from a viewing of surface from the left as illustrated by the eyeball.

6 Future Work

Here we enumerate several problems that should be addressed in the future, categorized into

those that we feel can be immediately tackled, those that may need to wait for mathematics to

progress a bit, and those whose realization is tied to the development of artificial intelligence.

6.1 Near Term Problems

In this section we will describe several concisely stated problems similar to the silhouette

curves problem that may be immediately tackled in the near future.

Extracting the Exterior Silhouette Curve. The actual visual exterior for a surface

may include subsets of several silhouette curves. The exterior silhouette curve may be

computed by projecting the non-occluded silhouette curves onto the view plane as a planar

graph embedding and extracting the exterior face.
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Shadows. We can compute direct shadows by computing the exterior silhouette curves

from a light source viewing in the direction of the surface and then projecting this exterior

silhouette onto a plane representing the ground that the surface is resting on. Since our

silhouette tracing algorithm may be used to trace an arbitrary scalar function, we could

also potentially compute the shadows cast by an object onto an arbitrary curved surface

by composing the visibility function of the shadow casting surface with the projection onto

another surface to extract complicated shadows or even self-shadows.

Minimum and Maximum Curvature Curves. Minimum and maximum curvature

curves may be used to communicate information about geometrically intuitive local co-

ordinate systems in the neighborhood of specific points on an object. It would be very useful

to be able to derive a 2D coordinate grid given a point on a surface.

Geodesic Curves. In the future, a user should be able to specify two points on a surface

and receive the curve that represents the minimum distance path between those two points.

This is known as the curve of minimum geodesic distance.

User Geometric Stylization Scheme. Ideally, users could define a separation between

geometric structure and the stylization applied to the geometry, much like cascading style

sheets (CSS) define a separation between content and style in the display of web pages

today. Users would be able to convert entire presentations, including the technical figures

and imagery from one style to another automatically. A user should be able to define their

own figure color scheme, label placement policy, viewing lighting and shadow orientations,

etc. in something like a CSS file and be able to automatically convert their figures between

styles.

Occlusion. In our extracted curves, in addition to those points whose normals face away

from the camera viewpoint, they may also include points that are not visible due to occlusion

by other regions of the surface. There might be some interesting topological properties of
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closed curves that could be used for this task, especially if the homogenous depth of each of

the points from the viewport was taken into account.

Boundaries and Interiors All of these problems could be extended to meshes with

boundaries, which would also lead to the problem of properly handling communicating both

the exterior and interior side of manifold surfaces with boundaries. It would also be inter-

esting to think about handling the extraction of curves on non-orientable surfaces such as a

Möbius strip.

Hot Wire Cutters. Silhouette curves may be used to carve out surfaces without double

negative curvature using hot wire cutters. There are some interesting problems related to

this observation.

Flat Patches Flat patches cause many scalar function to be non-Morse, because they

lead to non-isolated critical points and large areas with 0 curvature. It will eventually be

necessary to handle the problems associated with patches that contain 2D areas of silhouette

points due to them being oriented orthogonal to the viewpoint. These problem will also need

to be dealt with if a future system wants to integrate Loop-Schaefer surfaces with traditional

linear patch meshes.

6.2 Medium Term Problems

In this section, we describe several problems that are more difficult, mainly because they

involve geometric computations of a higher degree than the current mathematics of our day

can handle.

Perspective Correct Silhouette Curves. Right now, we are assuming that the user

is viewing the surface with an orthonormal view perspective where the eye is looking in

one uniform direction. This approximation leads to visually acceptable silhouette curve

computations, but it is not accurate in terms of the actual perspective projection that the
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figures are rendered in. To compute the curves in a perspective correct manner would require

higher degree geometric computations.

Extracting Exact Geometric Curves. Right now we are extracting points and tan-

gents along curves, but if people were to solve the problem determining the root curves of

multinomials, then we could represent these curves without discretization. This is a diffi-

cult problem in algebraic geometry that is connected to other seemingly hard problems in

computer science.

Labeling Geometry. It would be interesting to develop algorithms for properly placing

textual labels for a given figure view where the labels are aware of the geometry. The labels

placing would have to take into account desirable properties, such as avoiding overlapping

lines, avoiding intersections with other labels, and encouraging visual orientation coherence,

whereby the labels would all face roughly the same way. Arrows could also be investigated.

2D Segmenting and Labelling Ray Traced Imagery. A system could hypothetically

be built that segments a 2D projection of a ray traced scene into different regions based on

light transport phenomena. Please see Figure 20.

6.3 Long Term Problems

In this section, we will describe some long term grand problems that synthesize our work

with Artificial Intelligence.

Automatic Paper Interpreter. In the future, a user could take a confusing research

paper or any other work of communication feed it into a system and get a perfectly clear

version of the paper back that even contains automatically generated illustrations of the ideas

contained therein. This would enable us to reinterpret poorly written, poorly illustrated, or

outdated papers in a form that is more readable and understandable for modern audiences

and different types of learners. A person who shies away from mathematics or any other
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Figure 20: A labeled illustration of the idea of converting a ray traceable scene into an SVG file
with regions segmented by light transport phenomena.

technical field because of the obtuseness of its academic literature would be able to transform

the writing into a more palatable form.
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Appendix A: 3rd Order Bernstein Basis Functions and

Derivatives

The Bernstein Basis functions of the third order are defined as follows:

Bi =

(
3

i

)
xi(1− x)3−i, for i ∈ {0, · · · , 3}

Here is a listing of the four 3rd order Bernstein polynomials along with their 1st, and

2nd order derivatives:

B0 = (1− x)3 B′0 = −3(1− x)2 B′′0 = −6x+ 6

B1 = 3x(1− x)2 B′1 = (x− 1)(9x− 3) B′′1 = 18x− 12

B2 = 3x2(1− x) B′2 = (6− 9x)x B′′2 = −18x+ 6

B3 = x3 B′3 = 3x2 B′′3 = 6x

Here is a listing of the 3rd order Bernstein polynomials in standard polynomial form

along with their 1st derivatives in standard polynomial form:

B0 = −x3 + 3x2 − 3x+ 1 B′0 = −3x2 + 6x− 3

B1 = 3x3 − 6x2 + 3x B′1 = 9x2 − 12x+ 3

B2 = −3x3 + 3x2 B′2 = 9x2 + 6x

B3 = x3 B′3 = 3x2
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Appendix B: 2nd Order Bernstein Basis Functions and

Derivatives

The Bernstein Basis functions of the third order are defined as follows:

Bi =

(
2

i

)
xi(1− x)2−i, for i ∈ {0, · · · , 2}

Here is a listing of the 2nd order Bernstein polynomials along with their 1st, and 2nd

order derivatives:

B0 = (1− x)2 B′0 = 2x− 2 B′′0 = 2

B1 = 2x(1− x) B′1 = −4x+ 2 B′′1 = −4

B2 = x2 B′2 = 2x B2 = 2

Here is a listing of the three 2nd order Bernstein polynomials in standard polynomial

form along with their 1st derivatives in standard polynomial form:

B0 = x2 − 2x+ 1 B′0 = 2x− 2 B′′0 = 2

B1 = −2x2 + 2x B′1 = −4x+ 2 B′′1 = −4

B2 = x2 B′2 = 2x B′′2 = 2
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